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Special cases of the problem of determining the plastic zone around a round hole when 
the basic stressed state is a polynomial function of the coordinates were considered in 
[I-9], but a correct solution was not obtained. Accurate solution of this problem with 
a polynomial distribution of the basic stresses has been given in general form in [i0], 
although works continue to appear [Ii] in which erroneous solutions are repeated. In this 
article by using the results from [i0] a new method is suggested for finding coefficients 
of the transformation function and an example is given for accurate solution of the problem 
of determining the plastic zone around a circular hole with a specific quadratic distribu- 
tion of the basic stresses. 

Let in some region of an elastic body, which is under plane strain conditions or in 
a plane stressed state, principal stresses be prescribed by Kolosov-~uskhelishvili functions 
[121 

j=o i=o (i) 

where coefficients are the known constants. By selecting these functions in the form of 
(i) it is possible to obtain the solution for problems which are of practical interest [4, 
6, 13]. 

We make in this region a circular hole x 2 + y2~<R2 to whose contour we apply constant 

forces ar =P, Tre = 0, r =R (r, % are polar coordinates). We assume that around the hole 
an axisymmetrical biharmonic stressed state is realized [i0] 

(% + a#)/2 = p -6 ek (1 - -  k~) -4- ek  In (r~R-2), 

( ~  - -  a~):2 A- i~r# = e k ( l  - -  klR2r-~), e = __t,  k > O, kl ~< t .  
(2) 

Stresses (2) satisfy boundary conditions at the hole contour, equilibrium equations, and 
the condition of plasticity [(ae--or)/2] ~ q- Tre2 = k2(i -- kiR2r-2) 2. With k I = 0 the well-known 

Tresk-St Venant plasticity condition is obtained. With special selection of k I stresses 
(2) also satisfy other plasticity conditions [I0]. 

In the elastic zone stresses may be presented in terms of the functions 

r  = ~o(Z) + ~dz), g(z) = %(z) + gdz) (3) 

(~1(z), g~(z) characterize additional stresses caused by presence of a hole and a plastic zone). 
We designate the boundary between the plastic and elastic zones in terms of L. It is also 
necessary to find holomorphic functions :~l(z), g1(z) so that L stresses equate to expressions 
(2) and in the vicinity of an infinitely distant point there is [i0, 12] 

' q~dz) = 0(1/z2), ~ d z )  = O(l/zD. (4) 

There are the equations [12] 

(a~ + %)12 = O(z) + q)(z) = ( ~  + a,~)/2, 

(% - -  a~)/2 + i~xy = z ~ ' ( z )  + g(z)  = [ ( a e -  ~) /2-~-  iTrele-2ie. (5) 
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Since e-~ei=~z, r~ = zV , then by substituting expressions (2) and (3) in (5) we obtain for 

additional functions ~l(Z), ~l(Z) boundary conditions in L 

ZZ 

(ID 1 (Z,) + (I) 1 (Z) = p -[- 8k (] - -  ]l:1) -1- 8~ In  ~-- - -  [(D o (z) --~ O o ~ ] ,  

~o~ (~) + ,iq (~) = ~k ~ --  ~ ~ ~ --  [~m'o (~) + % (0]- 

z ~ L ,  

( 6 )  

With [z[ § ~ condition (4) should be satisfied. 

L e t  t h e  f u n c t i o n  

z = B c ~  (~) = Bc  ~ = 1 ~ 1 > o ,  C o = l  (7) 

reflect conformally the region [~I > 1 in an infinite region outside unknown contour L. In 
(7) it is possible to assume that c = [c[ > 0, since rotation of the coordinate system by 
angle argc does not change the boundary conditions (6). We specify that 

(I)e(~) =- k-lcI)i[Rco)(~)],  ~2(~) = k - i~ i [Rc (o (~ ) ] ;  

a~ = k - l a i ( R c )  ~ = a(i)c~, ~.~ = k - l b i  (Rc)~ = ~(i)c ~, ] = O, m, 
( 8 )  

and taking account of (4) and (7) with large [~[i there should be 

m~(~) = O 0 / ~ D ,  % ( 0  = O(I /~D.  

Here by using (i), (7), and (8) we rewrite boundary conditions (6) for functions 

�9 =(~)in the form 

( 9 )  

r162 

a9 2 (t) + (P2 (t) = p / k  4- ~ (1 -- k,) 4- e In c ~ + e In  co(t) (o (t) -- 

- -  aso) j (t) + _~, a~co j (t) , I t] = t ,  
1 /=o 

~o' (t) c~o ~ (t) 

(10) 

In (i0)by values of functions in the vicinity of It =iwe understand limiting values of 
functions with the approach of ~ from the region ]~ > 1 to points of the circle It] = i. 

Accurate solution of boundary conditions (9) and (i0) in a general form is given in 
[I0]. In the case of m = 2 the solution of boundary probelms (9) and (i0) is written as 
in [i0]: 

r 2 (~) : e  In ~ - -  {a I [co ( ~ ) -  c 1 - -  ~] + a~ [co s ( ~ ) -  (c~ + 2e2) - -  

- 2 ~  - ~ l  + - C  + ~ + $ -  ' 

T~ (~) = ~%~ (~) 13o - 13,o~ (~)  - ~o~ (~) + ~ - ~ ,  + - 

--2a, - - - ~ + - ~ - + ~ T  + 1 5 o + ~ , ( c * + ~ ) +  

+ ~ (c, ~ + ~, + 2 ~  + ~ ) ] ;  

c~A~v + (~Ol- ~) ~ - ( ~  +z, + ~)~-(~,~1 +~,)~-~, 

(ii) 

(12) 
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where 

A 1 = ~z(~)c + 2a(~)c~cx, A~ = 2r ~, 

B~ = p(~ + f~a)cc~ + f~(~)c ~ (c~ + c~), B~ = f3(~)c + 2fh~)c~c~, B a = ~(~)c~; 

p / k  + e ( i  - -  kx) + e In  c 2 - -  {r o + ao + ((z(ncl + a(1)cl) c + 

+ [a(2)(c[  + 2c~) + ~(~) (el + 2c~)] c 2] = O. 

(13) 

(14) 

Coefficients c I and c 2 in Eqs. (Ii)-(14) are determined by conditions which mean that the 
fraction in (12) should not have any singular points with [~[ > 1. Coefficient c is found 
from Eq. (14). As noted in [i0], in the preceeding works [1-9, 11] before solution of the 
problem it is always that c I = 0, and in the equations for c in the form of (14) there are no 
terms which contain c outside the sign of the logarithm and condition (9) is not fulfilled. 
A method is suggested in [i0] for obtaining equations for c I and c 2 consisting of requiring 
conformity to zero of the numerator and denominator in (12) with ]~[ ~ i. In this article 
we assume somewhat differently. 

It is easy to prove that if ~q is the root of the polynomial in the denominator of (12), 
then ~2+q = I/~q, q = i, 2, is also a root. If [~q[ ~ i, then ]~2+q] = i/[~q] ~ l  , i.e., there is 

always one root within a single circle, and the other is outside a single circle, or the 

root ~q = I/~q is in a single circle. 

By comparing expressions (7) and (12) we find that coefficients c n of an expansion into 
a series of function m(~) in the vicinity of an infinitely distant point satisfy a recurrent 
set of equations 

21 2C3 -'{-- A 1c2 - -  8c I q -  .t~ 1 = 0 ,  

A2c~ + Alc4 --  ~c3 + X~c. + 74.2cl + 7~ = O, 

A2c ~ + AlC 5 -- eC 4 -~ A l e  ~ -+- J~c  2 + J~  = O, 

A-,_c,~+3 + A l c n + 2 -  scn+l + -~1c,~ + ~l.,cn_l = 0, n = 4, co. 

(15) 

In the case m = i, i.e., with a(2 ) = O, ~(2) =0 , we deduce that 

co ( 0  = ~ + c ,  + 
(gel - - ~ ( 1 )  c) ~2 - -  (~(1)CCl ..~ ~0 -~ ~(1)c;1) ~ - -  ~(1) c . 

p / k  + e(t  - -  kl)  + e In c 2 - -  [~o q - a o  + (~(1)cl + ~(1)cl) c] = O: 

0~(1)CC2 - -  gC 1 - ~  4 1 ) C  = 0 ,  

ot(1)cc~ -- ~ca + ~z(1)c Q -~- ~ ) c  ~- O, 

~(ncc,~+2 - -  sc,~+~ + "a(ncc,~ = O, n = 3, co. 

(16) 

( i 7 )  

(18) 

First we consider gqs. (16)-(18). Since m(~) should not have singular points with 
[~I ~ i, apart from a pole with ~ = ~, then we take the solution of system (18) in the form 

= = . ~  , n  ( 1 9 )  Co ql + ~o 1, el ---- ql~l + 51, C2 = q l ~ l  + ~2, O n =  q1~1, ~Z---- 3, oo, 
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(ql, 6o, 61'  62 '  El 

obtain 

- -  x/R 

Fig. 1 

are still undetermined values). By substituting (19) in system (18) we 

a ( ~ ) c 6 2  - -  e61 + ~z(~)c6 o = O, 
- e G  + ~c61  + -~o + ~(l~Cq = O, 

(20) 

From the first equation in (19) we have ql = i - ~0, and from Eqs. (20) successively we find 

that 

6 = --~./-~i~, 61 = -(-eG + ~ + ff<1)cq)/(=~c), 

6 o ---- --(~z(1)c62 -- e51)/(~1)c ). (22) 

To the right in (22) there is c I, but for c I there is the second equation of (19): 

cl = (1 - -  6o)~1+61; 

and by substituting expression (22) in (23) and considering (21) we write 

( 2 3 )  

Cl={t+a(l_ ) [  .~~ +~(1) (c1+~(1)~1/1~1}~1..___ (24) 
CL(1 ) (Y~(1) C (:Z(1) 0~(1 ) ] 

This equation is equivalent to the corresponding equation in [i0]. Thus, for unknowns c, 
cl, ~l we have a set of three equations (17), (21), (24). 

By substituting (19) in (7) and summing the series we obtain instead of expression (16) 
the following: 

C2 - -  (~2 

-- ~i " 

(25) 

All of the coefficients in (25) are determined entirely by solving set (17), (21), (24) with 
respect toic, c I, ~i, taking account of Eqs. (19) and (22). An example of solving this sys- 
tem and plotting the elastoplastic boundary L by Eq. (25) for specific values of prescribed 
external parameters is given in [i0]. 
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Fig. 2 

Now we return to system (15) and we take its solution in the form 

c - l = q l + q ~ + 6 - 1 = 0 ,  c o=q1~1+q~+ 6 o = 1 ,  

�9 c 1 = q l ~ b q 2 ~ 2 - ~ 6 1 ,  I~I]<Zt,  [~21<1,  g1::~=~2, 
~n+l c2 = qir + q,;~ + a. c. = qir +I + q~ , ~ = 3, ~ 

(26)  

In the first two equations of (26) we find that 

- -~2~__1--( t - -60)  t--aO"~16__ 1 
ql = ;o--~1 , q2 = $2--~1 

By substituting (27) in the third and fourth equations of (26) we have 

C2 = ~-1~1~2(~1 "~ ~2) "~ (t  - -  a0)[(~ 1 -Jr- ~2)2 __ ~1~21 "~ ~2- 

Equations for 6_i, 50, 61, 62, ~1, ~2 are obtained by substituting (26)  in (15): 

Al62 - -  e61 + A16o + A25_1 = 0, 

(27)  

(28) 

(29)  

]la~ + 14~61 + 7~ = o, 7~a.~ + ~ = o; 

2~1,2 "~ lgl,2 -- ggl,2 -~- 1~1,2 "~ = 

Successively from (29) we find that 

62 = - - B j A 2 ,  

61 = --(A162 "b B2)/A2, 

= --(--e~2 + ~1~ 1 + B1)/A2, 5_ 1 ---- --(Aa62 --  e(31 + A15o)/A2. 

(30) 

(31) 

In view of (13) in the right-hand part of (31) there are coefficients c I and c2, then by 
substituting (31) in (28) we obtain equations for them. Thus, values of c, ci, c2, ~1, ~ re- 

quired by us are found from set of Eqs. (14), (28), (30). If in (31) we substitute expres- 

sion (28) then we shall have a set of equations for 6_a, 60, 51 , and here it is also neces- 

sary to take account of (14) and (30). 

By summing series (7) with coefficients (26) we write instead of expression (12) 

q ~  q2~a2 (32)  ~ o ( ~ ) = ~ + q + ~ +  :_:----;-+ ~-~----7-' 
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where all of the coefficients are determined by solving system (14), (28), (30) and taking 
account of Eqs. (27) and (31). 

If it is assumed that prescribed parameters are such that polynomial (30) may have a 
multiple root ~ = ~2, I~ii<I ~ , then instead of (26) the solution of (15) should be taken in 
the form 

C-1 = ql  - ~  6 - 1  = 0,  C 0 = (ql  -~  q.,)~1 - ~  60 ----- i ,  

cl ---- (ql + 2qe)~ + 61, ce = (q~ + 3q2)~ + 6e, c~ = [qx + (n ~- 1) qe] g1""+1, 

n=3 ,  oo. 
(33) 

From the first two equations of (33) we have 

ql : --8-1' q2 = (I -- 80)/~ I -4- 8_1, (34) 

and equations for c I and c 2 here take the form 

cl = 6-1.~ A- 2 (t - -  60) ~x + 61, cz = 2 6 - 1 ~  + 3 (i  - -  60) ~12 + 6,, ( 3 5 )  

which a l s o  f o l l o w s  from (28) w i t h  e l  = ~2. 

With s u b s t i t u t i o n  o f  (33)  i n  s y s t e m  (15) we o b t a i n  f o r  6~, 60, 61, 62 
and i n s t e a d  o f  (30)  

Ae~, ~ + A~;~ - -  ~,~ + A~;1 + A2 = 0; 

4A2~ ~+3A1~ ~ - 2 e ~ , + A , = 0 ,  I ~ l < t ,  

where c o n d i t i o n  (37) p r o v i d e s  m u l t i p l i c i t y  o f  r o o t  5,  f o r  p o l y n o m i a l  (36) .  
if coefficients in (36) are connected by additional relationships. 
for (36) we have 

~1 -4- i / -~  = - -A1/2A2,  ~1/-~1 =- A , /A I ;  (38) 

( - - A J 2 A 2 )  ~ --[- 2A1/A 1 = - -e /A~,  (.41/A~) e = . ~ / A  e. (39)  

With fulfilment of (39) from (38) it is possible to find ~i. Equations (36) and (37) are 
equivalent to relationships (38) and (39). 

By summing series (7) with coefficients (33) we obtain instead of (12) 

% - 6e q.4~ 
+ ( ; ) = ~ + c 1 +  + ~-C~ + (;_;~)~' 

here all of the coefficients are entirely determined by solving system (14), (35), (36), 
(37) and taking account of Eqs. (34) and (31). 

We consider an example. Let the following parameters be prescribed 

a o - - 0 ,  b0 = 0 ,  al----0, b 1 = 0 ,  b e - - 0 ,  a9 = a e ,  ( 4 0 )  

then the main stresses will be these: 

c~ = - -@ey  e, ay = 4aex 2, ~:~y = O. 

From (8), (13), (40) we have 

a o = 0 ,  ~o = 0 ,  r = 0 ,  [JO.) = 0 ,  (z(e> = k - l a e R  2 =o:(~), [J(2) = 0 ,  

A2 = 2a(2)c ~ = A2, A1 -- 2a(2)cecl = A2cl, B1 = 0, Be = 0, B~ = 0. (41) 

Eqs. (29) or (31), 

(36) 

(37) 

This is possible 
From the Viete equation 
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Equations (14) and (30) take the form 

p / k  + ~ (t  - -  k~) + ~ In  c~ - -  ~(~) (c~ + 2e~ + ~ + 2 ~ )  c~ = O; 

~3 E 2 

Taking account of (41) from (31), (28), (27), and (32) 

6~=0, 6~=0, 60=0, 8_1=0; 
c~ = ~ + ~ ,  c, = ( ~  + ~ ) '  - -  ~1~; 

ql---~ - - ( ~ 2 -  ~1) -1' q2------($2- ~I) -1; 

(42) 

(43) 

(44) 

By excluding ~I, and ~2 from (43) and (44) we write 

cl -F el ( - -  c~ "I- 3e2 - -  elAn) = O, I - -  (c~ - -  c2) (c~ q- c~ - -  8/A2) ---- O. ( 4 6 )  

I t  i s  p o s s i b l e  t o  s o l v e  t h e  s y s t e m  f o r  t h r e e  u n k n o w n s  c ,  c 1, c 2 :  ( 4 2 ) ,  ( 4 6 ) .  

F rom t h e  V i e t e  e q u a t i o n  f o r  Eq.  ( 4 3 )  t a k i n g  a c c o u n t  o f  ( 4 4 )  we h a v e  t h e  r e l a t i o n s h i p s  

2ci +c1/ (~1~2)  = O, ~ 2  + (ClCl + t ) / ( ~ $ 2 )  = --sI(2~(2)r (47) 
~ ~ = ~ ~. 

From t h e  f i r s t  e q u a t i o n  o f  ( 4 7 )  two  v e r s i o n s  f o l l o w :  c 1 = ~1 + ~2 = 0 a n d  ci ~ O, $1~2 = t / 2  

The s e c o n d  v e r s i o n  d o e s  n o t  s u i t  u s  s i n c e  h e r e  a s  t h e  p r o o f  s h o w s  i t  i s  i m p o s s i b l e  t o  
satisfy univalent conditions for function ~(r There remains the other version c I = 0, 
$2 = -r Then from the second equation of (47) we find that 

4~(2)c 2 

and  t h e r e  s h o u l d  be  2 [ ~ r ~ ( 2 ~ l c < t  . E q u a t i o n  ( 4 5 )  t a k e s  t h e  f o r m  

~(:)=~+@ ~ + =~_~" 

Function m(r of (49) is univalent with Ir > i, and boundary L entirely embraces a circular 
hole if the following equalities are fulfilled 

I~[  ~ < 1/3, t + I$~i ~- < c. ( 5 0 )  

From the first inequality of (50) taking account of (48) we have 2 [~(2)]c ~ 

Equation (42) taking account of (44) and (48) is written as: 

ep/k - -  kl = - -  [ln c ~ + t / t - -  (4~(~)c~)2]. ( 5 1 )  

Relationship (51) is an equation for c. If c is specified, then this will be an equation 
for p/k (what pressure should be applied to the hole contour so that the zone is plastic and 
limitation (50) is fulfilled). 

L e t  ]~1[ 2 - -  1/3, c ---- 2 , h e r e  41~(2)[ ---- 0 . t5 ,  ep/k - -  k~ = - -2 ,1863 ,  ax/k = --O.15(g/R) 2, a~/k = 0.15 (x /R)  ~, 

~xy = 0. From (49) we obtain an equation for contour L in parametric form 
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x 3coscp--2cos ~r y 2sin ecp , qD~ [0,2~]. 
-R ---- i13_I_ sin ~ ~ ' -B- = I /3+s in2cp ( 5 2 )  

The form of contour (52) is presented in Fig. i where p~ = oijnj (nj are components of the 

normal to the area). The region of parameters (50) with which a solution of (49) exists is 
shown in Fig. 2 (hatched). Contour L in Fig. i is plotted from parameters corresponding 
to point I in Fig. 2. If parameters relate to straight line f2~ then boundary L will touch 
the contour of the hole, and if it relates to straight line fl, then L will be a point of 
return as in Fig. i. 
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17. S. N. Atluri (ed.), Numerical methods in Fracture Mechanics [Russian translation], 

Mir, Moscow (1989). 

The errors included in previous works [1-9, ii] are entirely correctly criticized by 
Ostrasablin. However, the criticism is insufficient. In studying specific elastoplastic 
problems it is necessary to be aware of the following. 

i. In order to solve the elastoplastic problem after satisfying differential equations 
andlboundary conditions it is necessary to check fulfilment of inequalities which emerge 
from the condition of plasticity in the "elastic"i region since analytical methods do not 
guarantee fulfillment of this inequality in the "elastic" region of the solution. It is pos- 
sible to argue that in the problem of a plastic zone close to a hole with a polynomial dis- 
tribution of stresses at a distance from the hole the plasticity condition is always infring- 
ed in the "elastic" region for so-called accurate solutiogs if the power of the polynomial m 
is greater or equal to one. This was well known by Gali~Lwho did not attach particular 
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importance to these "accurate" solutions, and he considered them an illustration of the 
method itself (f~r a circular hole with plane strain). All of the "accurate" solutions [i- 
ii] ~ with m ~ 1 (and of the present article) do not satisfy the plasticity condition. 

2. All accurate analytical solutions for elastoplastic problems obtained in [i-ii] 
and in this article are obtained easily by the method of functional equations [14]. 

3. Unfortunately, accurate determination of the boundary of the plastic region is not 
always important since plastic strain in a considerable part of the plastic zone may be 
~egligibly small. In this case an approximate solution is much more useful which "embraces" 
a ~'deeper '~' zone in which marked plastic strains occur. 

4. The search for accurate analytical solutions of elastoplastic problems, which is 
not a very promising scientific subject to which extensive literature has been devoted (see 
e.g. [6, 9-11, 14, 15], although all of the available accurate solutions may be counted on 
the fingers of one hand. Computer methods are more promising, the most effective of which 
are given in [16, 17]. 

February 25, 1989 G. P. Cherepanov 

AUTHOR'S REPLY 

i. It is well known that an infinite plane with a hole is idealization of the problem 
for a finite region with a hole in the case when the hole dimensions are small compared with 
those of the region. Idealization is performed in order not to solve the more complex prob- 
lem for a doubly connected region. The solution for an infinite plane with a hole will be 
approximate for a finite region with a hole, although the solution itself for an idealized 
boundary problem may be found accurately. Therefore a solution for an infinite plane with a 
hole may be used only in a certain finite region around the hole. This is noted for example 
in [i0, 12], and in this article it is not specially mentioned since this is a generally 
accepted approach. If in a finite region without a hole the main stressed state is poly- 
nomial, then evidently coefficients aj and bj in (i) should be such that a condition of 
plasticity is not achieved in the region in question. For an example from the article we 
have the principal stresses: (~y -- o~)/2k § i~y,'k = 2a<~)r2/~ 2 , and the Tresk plasticity condition 

will not be achieved if 2[~(Jr2/R2 < i. This inequality determines the ratio between the value 
of coefficient [~(2)I and the relative size of the hole and a finite plate in which the solu- 

2 f; tion should be considered. For a numerical example we have ~2 < B/2ja(2)[= R2/2.0.0~75__ 13.33R2, 
i.e., in this region it is permissible to use a solution for an infinite piate with a hole. 
Additional stresses caused by presence of a hole and a plastic zone around it are given com- 
plex potentials ~(z),V~(z) and with large r they are of the order O(i/r2), i.e., they decrease 
rapidly and they not strongly alter the region in which it is possible to use the solution 
for an infinite plate with a hole. 

2. Although the method of functional equations from [14] makes it possible sometimes 
to obtain a solution by selecting m(r in the form of a polynomial or a rational function and 
selection of unknown coefficients, the equation for transformation of function ~(~) obtained 
in [i0, 14] solves the problem for the general case and in this article it does not compli- 
cate the solution compared with the method of functional equations. 

3. Here the statically determined problem is solved when stresses and the elastoplastic 
boundary are independent of equations for strains. In order to determine strains or displace- 
ments in the plastic zone it is necessary to solve its set of equations and to have for it 
boundary conditions at the elastoplastic boundary (see e.g. [i0, 15]). For this it is also 
necessary to know the elastoplastic boundary at which values of strains or displacements from 
the direction of the elastic region will be unknown. Before solving equations for strains we 
do not know where these strains are in the plastic zone. If we have accurate expressions for 
the elastoplastic boundary and strains in it, then this is no worse than any approximate ex- 
pressions. 

4. A specific problem is solved in this article and the future for these investigations 
is not discussed. The author agrees with the fact that numerical methods are used extensively 
and they make it possible to solve more complex problems for which it is impossible to find 
an analytical solution. However, accurate analytical solutions are also important and they 
may for example be used as a test for checking numerical methods. 
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Works [14, 15] may be included in the literature cited since they are devoted to study- 
ing elastoplastic problems, but all the same the problem of the present-article is not con- 
sidered directly in them and therefore they were not cited. 

Numerical methods areused in [16, 17] for solving mechanics problems. Numerical me- 
thods are not used or discussed in this article. Inclusion of them in the literature cited 
isj considered to be superfluous. 

April 7, 1989 N. I. Ostrosablin 

792 


